Prove The Identities., 1.) Cos\Xb2 Theta 2013 Cot \Xb2 Theta = -Cos\Xb2 Theta Cot\Xb2 Theta, 2.) Sec^4 Theta 2013 Sec^2 Theta = Tan^4 Theta + Tan^2 Th
Prove the identities.
1.) cos² theta – cot ² theta = -cos² theta cot² theta
2.) sec^4 theta – sec^2 theta = tan^4 theta + tan^2 theta
Step-by-step explanation:
1.) cos² theta – cot ² theta = -cos² theta cot² theta
Trigonometric identity: cot theta = cos theta / sin theta
cos² theta - (cos² theta/sin² theta) = -cos² theta cot² theta
factor out cos² theta
cos² theta1 - (1/sin² theta) = -cos² theta cot² theta
Trigonometric identity: csc theta = 1/sin theta
cos² theta(1 - csc² theta) = -cos² theta cot² theta
Trigonometric identity: 1 - csc² theta = -cot² theta
-cos² theta cot² theta = -cos² theta cot² theta
2.) sec^4 theta – sec^2 theta = tan^4 theta + tan^2 theta
sec^2 theta (sec^2 theta – 1) = tan^4 theta + tan^2 theta
Trigonometric identity: 1 + tan² theta = sec² theta
1 +tan² theta ( tan² theta ) = tan^4 theta + tan^2 theta
tan^4 theta + tan^2 theta = tan^4 theta + tan^2 theta
Comments
Post a Comment